Acta Cryst. (1974). A30, 626

Structure Factor Algebra in the Probabilistic Procedure for Phase Determination. I

By C. GIACOVAZZO

Istituto di Mineralogia, Università di Bari, Italy

(Received 14 December 1973; accepted 11 March 1974)

It is possible to take the statistical weight of reflexions into account in the \sum_i , Sayre and tangent formulae. A suitable new use of the normalized structure factors is proposed in these procedures for phase determination; new generalized formulae are derived in a form suitable for automatic computer calculation.

Introduction

Hauptman & Karle (1953) defined the normalized structure factor E_h as

$$E_{\mathbf{h}}^{2} = F_{\mathbf{h}}^{2} / \varepsilon \sum_{j=1}^{N} f_{j}^{2}(\mathbf{h})$$
 (1)

where

$$\varepsilon = \frac{m_{20} + m_{02}}{m} \; ; \; m_{20} = \iiint \psi^2(\mathbf{h}) \mathrm{d}\mathbf{r} \, ; \; m_{02} = \iiint \eta^2(\mathbf{h}) \mathrm{d}\mathbf{r} \; .$$

m is the symmetry number of the space group, ψ and η are the trigonometric functions for the real and imaginary parts of the structure factor.

The quasi-normalized structure factor \mathscr{E}_h is also frequently used in structure determination: it is

$$\mathcal{E}_{\mathbf{h}} = \sigma_2^{-1/2} \sum_{j=1}^{N} Z_j \exp 2\pi i \mathbf{k} \mathbf{r}_j \tag{2}$$

where $\sigma_2 = \sum_{i=1}^{N} Z_i^2$: no space-group weight of reflexions

is considered. The $E_{\rm h}$ was defined to ensure always that mean-square $\langle E_{\rm h}^2 \rangle = 1$, the quasi-normalized $\mathscr{E}_{\rm h}$ to guarantee simplicity in the derivation of algebraic relationships.

Karle & Karle (1966) advised, on an experimental basis, the use in symbolic-addition procedures of the $E'_{\mathbf{h}}$ factors where

$$|E_{\mathbf{h}}'|^2 = \frac{|F_{\mathbf{h}}|^2}{\varepsilon' \sum_{j} f_j^2(\mathbf{h})}.$$
 (3)

 ε' is a number which corrects for space-group extinctions: the relation proposed between $\mathscr{E}_{\mathbf{h}}$ and $E_{\mathbf{h}}'$ is

$$|\mathscr{E}_{\mathbf{h}}|^2(1-q) = |E'_{\mathbf{h}}|^2$$

where q is the fraction of reflexions in the h set which are space-group extinctions.

This work justifies in Sayre, tangent and \sum_1 formulas a new use of the normalized structure factors on the basis of their algebra; a combination of the linearization theory (Bertaut & Waser, 1957; Bertaut, 1959a,b) and of the probability distribution functions have been used to derive the method in a form suitable for automatic computing. A method, similar in some

aspects, has been used in the centrosymmetric case by Naya, Nitta & Oda (1964).

Algebraic considerations

For equal atoms, if m is the space-group order, according to (2), (Bertaut & Waser, 1957)

$$\mathscr{E}_{\mathbf{h}} = N^{-1/2} \sum_{1}^{N/m} p_{\mathbf{h}} \sum_{1}^{m/p_{\mathbf{h}}} \exp 2\pi i \mathbf{h} \mathbf{C}_{s} \mathbf{x}_{j}$$

$$= N^{-1/2} \sum_{1}^{N/m} \xi_{j}(\mathbf{h}) \quad (4)$$

where $C_s x = R_s x + T_s$: C_s is the s-symmetry operation (R_s rotation component, T_s translation component), p_h is the statistical weight.

Following Woolfson (1954), we impose for general reflexions the condition that \mathbf{k} varies while $\mathscr{E}_{\mathbf{k}}$ and $\mathscr{E}_{\mathbf{h}-\mathbf{k}}$ are constant: we obtain, by the application of the central-limit theorem (Cramér, 1951).

$$\langle \mathscr{E}_{\mathbf{h}} \rangle = N^{-1/2} \sum_{\mathbf{j}}^{N/m} \langle \xi_{\mathbf{j}}(\mathbf{h}) \rangle = N^{-1/2} \mathscr{E}_{\mathbf{k}} \mathscr{E}_{\mathbf{h} - \mathbf{k}},$$
 (5)

$$V_{\mathbf{h}} = N^{-1} \sum_{1}^{N/m} \langle |\xi_{J}(h)|^{2} \rangle - |\langle \xi_{J}(h) \rangle|^{2}$$

$$= N^{-1} \sum_{1}^{N/m} \left\{ m - \frac{|\mathscr{E}_{\mathbf{k}} \mathscr{E}_{\mathbf{h} - \mathbf{k}}|^{2} m^{2}}{N^{2}} \right\}. \tag{6}$$

If the number N/m of the independent atoms in the cell is large enough

$$V_{\mathbf{h}} = 1. \tag{7}$$

By following the Cochran (1955) treatment and expressing in E terms, we obtain the well known results:

$$\langle \varphi_{\mathbf{h}} \rangle = \varphi_{\mathbf{k}} + \varphi_{\mathbf{h} - \mathbf{k}} ,$$
 (8)

$$P(\varphi_{\mathbf{h}}) = \exp \left\{ G_{\mathbf{h}, \mathbf{k}} \cos \left(\varphi_{\mathbf{h}} - \varphi_{\mathbf{k}} - \varphi_{\mathbf{h} - \mathbf{k}} \right) \right\} / 2\pi I_0(G_{\mathbf{h}, \mathbf{k}}), \quad (9)$$

where

$$G_{h,k} = 2 \frac{|E_h E_k E_{h-k}|}{VN}$$
,

and I_0 is a modified Bessel function of the second kind (Watson, 1922).

Starting from equations (5), (7), (8) and (9) Karle & Karle (1966) established, by probability considerations, the tangent formula

$$\tan \varphi_{\mathbf{h}} = \tan \frac{\sum\limits_{\mathbf{k}} |E_{\mathbf{k}} E_{\mathbf{h} - \mathbf{k}}| \sin (\varphi_{\mathbf{k}} + \varphi_{\mathbf{h} - \mathbf{k}})}{\sum\limits_{\mathbf{k}} |E_{\mathbf{k}} E_{\mathbf{h} - \mathbf{k}}| \cos (\varphi_{\mathbf{k}} + \varphi_{\mathbf{h} - \mathbf{k}})}$$
(10)

with variance

$$V_{\mathbf{h}} = \frac{\pi^2}{3} + [I_0(\alpha)]^{-1} \sum_{1}^{\infty} \frac{I_{2n}(\alpha)}{n^2} - 4[I_0(\alpha)]^{-1} \sum_{0}^{\infty} \frac{I_{2n+1}(\alpha)}{(2n+1)^2},$$
(11)

where

$$\alpha = \left\{ \left[\sum_{\mathbf{k}} G_{\mathbf{h}, \mathbf{k}} \cos \left(\varphi_{\mathbf{k}} + \varphi_{\mathbf{h} - \mathbf{k}} \right) \right]^{2} + \left[\sum_{\mathbf{k}} G_{\mathbf{h}, \mathbf{k}} \sin \left(\varphi_{\mathbf{k}} + \varphi_{\mathbf{h} - \mathbf{k}} \right) \right]^{2} \right\}^{1/2}. \quad (12)$$

The central-limit theorem, employed to obtain equations (5), (7), (8), (9) disregards the actual algebraic form of the ξ function, and therefore these equations are not strictly applicable in the case of special reflexions.

In order to generalize the previous formulae probability theory will be used here.

Probability considerations

Following Hauptman & Karle (1953) and employing the Klug (1958) notation, for a general centrosymmetrical group of order m, the joint probability distribution results:

$$P(E_{1}, E_{2}, E_{3}) = \frac{1}{(2\pi)^{3/2}} \exp\left[-\frac{1}{2}(E_{1}^{2} + E_{2}^{2} + E_{3}^{2})\right]$$

$$\times \left\{1 + \frac{1}{t^{1/2}} \left[\frac{\lambda_{111}}{1!1!1!} E_{1}E_{2}E_{3}\right] + \frac{1}{t} \left[\frac{\lambda_{400}}{4!0!0!} H_{4}(E_{1}) + \frac{\lambda_{040}}{0!4!0!} H_{4}(E_{2}) + \dots\right] + \frac{1}{2t} \left[\frac{\lambda_{111}^{2}}{1!1!1!} H_{2}(E_{1})H_{2}(E_{2})H_{2}(E_{3})\right] + \frac{1}{t^{3/2}} \left[\frac{\lambda_{113}}{1!1!3!} H_{1}(E_{1})H_{1}(E_{2})H_{3}(E_{3}) + \dots\right], \quad (13)$$

where

$$E_1 = E_h, E_2 = E_k, E_3 = E_{h+k},$$

and

$$\lambda_{rsw} = \frac{K_{rsw}}{K_{200}^{r/2} K_{020}^{q/2} K_{002}^{w/2}} = \frac{K_{rsw}}{(m)^{(r+s+w)/2}} \; .$$

 K_{rsw} is a multivariate cumulant of order r+s+w, and H(z) is a Hermite polynomial defined by the equation:

$$H_{\nu}(x) = (-1)^{\nu} \exp\left[\frac{1}{2}x^2\right] \frac{\mathrm{d}^{\nu}}{\mathrm{d}x^{\nu}} \exp\left[-\frac{1}{2}x^2\right].$$

The first moment of the conditional probability distribution $P(E_1|E_2,E_3)$ is, retaining terms to order $1/t^{1/2}$,

$$\langle E_1 | E_2, E_3 \rangle = \frac{\lambda_{111}}{t^{1/2}} E_2 E_3 .$$
 (14)

As

$$K_{111}=m_{111}=\left\langle \frac{\xi(\mathbf{h})}{\sqrt{p_{\mathbf{h}}}} \frac{\xi(\mathbf{k})}{\sqrt{p_{\mathbf{k}}}} \frac{\xi(\mathbf{h}+\mathbf{k})}{\sqrt{p_{\mathbf{h}+\mathbf{k}}}} \right\rangle,$$

where p_h , p_k , p_{h+k} are the statistical weights of E_h , E_k , E_{h+k} , we find

$$\langle E_{\mathbf{h}} | E_{\mathbf{k}}, E_{\mathbf{h}+\mathbf{k}} \rangle = \left\langle \frac{\xi(\mathbf{h})\xi(\mathbf{k})\xi(\mathbf{h}+\mathbf{k})}{m^{3/2}\sqrt{p_{\mathbf{h}}p_{\mathbf{k}}p_{\mathbf{h}+\mathbf{k}}}} \right\rangle$$

$$\times \frac{1}{t^{1/2}} E_{\mathbf{k}} E_{\mathbf{h}+\mathbf{k}} = W_{\mathbf{h},\mathbf{k}} (N^{-1/2} E_{\mathbf{k}} E_{\mathbf{h}+\mathbf{k}}) , \qquad (15)$$

where

$$W_{\mathbf{h},\mathbf{k}} = \frac{1}{m\sqrt{p_{\mathbf{h}}p_{\mathbf{k}}p_{\mathbf{h}+\mathbf{k}}}} \left\langle \sum_{1,r}^{m} \xi[\mathbf{h}(\mathbf{C}_{s}-\mathbf{I}) + \mathbf{k}(\mathbf{C}_{r}-\mathbf{I})] \right\rangle . \tag{16}$$

 $W_{h,k}$ takes the statistical weights of the normalized structure factors E_h , E_k , E_{h+k} into account. Formula (16) has been worked out in the Appendix and is very suitable for automatic computing.

As is well known, the second moment of the E_h conditional distribution is, from equation (13), retaining terms to order $1/t^{1/2}$, equal to unity, whatever the statistical weights may be.

If we expand the E_h conditional probability in the form of the Gram-Charlier series (Cramér, 1951) we obtain

$$P(E_{\mathbf{h}}|E_{\mathbf{k}}, E_{\mathbf{h}+\mathbf{k}}) = \frac{1}{\sqrt{2\pi}}$$

$$\times \exp\left[-\frac{1}{2}\left(E_{\mathbf{h}} - \frac{W_{\mathbf{h}, \mathbf{k}}}{N^{1/2}}E_{\mathbf{k}}E_{\mathbf{h}+\mathbf{k}}\right)^{2}\right] + \dots$$
As

$$P_{+} = \left(\frac{P_{-}}{P_{+}} + 1\right)^{-1},$$

we easily obtain

$$P_{+}(E_{\rm h}) = \frac{1}{2} + \frac{1}{2} \tanh \left[\frac{W_{\rm h,k}}{N^{1/2}} |E_{\rm h}| E_{\rm k} E_{\rm h+k} \right]$$

or in general

$$P_{+}(E_{h}) = \frac{1}{2} + \frac{1}{2} \tanh \left[\frac{|E_{h}|}{N^{1/2}} \sum_{1}^{r} W_{h,kj} E_{kj} E_{h+kj} \right].$$
 (17)

Σ_1 formula

From Klug (1958) we derive, for a centrosymmetric space group of order m, the probability distribution

$$P(E_{1}, E_{2}) = \frac{1}{2\pi} \exp\left[-\frac{1}{2}(E_{1}^{2} + E_{2}^{2})\right]$$

$$\times \left\{1 + \frac{1}{t^{1/2}} \frac{\lambda_{12}}{1!2!} H_{1}(E_{1}) H_{2}(E_{2}) + \frac{1}{t} \left[\frac{\lambda_{40}}{4!0!} H_{4}(E_{1}) + \frac{\lambda_{04}}{0!4!} H_{4}(E_{2}) + \frac{1}{2} \left(\frac{\lambda_{12}}{1!2!}\right)^{2} H_{2}(E_{1}) H_{4}(E_{2})\right] + \dots\right\}, \quad (18)$$

where

$$E_1 = E_{2h}, E_2 = E_h$$

and

$$\lambda_{ij} = \frac{K_{ij}}{(K_{20})^{i/2}(K_{02})^{j/2}} = \frac{K_{ij}}{m^{(i+j)/2}}.$$

The first conditional moment $\langle E_{2h} | E_h \rangle$ gives, retaining terms to order $1/t^{1/2}$,

$$\langle E_{2h} | E_h \rangle = \frac{1}{t^{1/2}} \frac{\lambda_{12}}{1!2!} (E_h^2 - 1) .$$

As (see Appendix)

$$K_{12} = m_{12} = \frac{\langle \xi^{2}(\mathbf{h})\xi(2\mathbf{h})\rangle}{(p_{\mathbf{h}})^{3/2}}$$

$$= \left\langle \frac{\sum_{q}^{m} \xi[\mathbf{h}(\mathbf{I} - \mathbf{R}_{q})]\xi[\mathbf{h}(\mathbf{I} - \mathbf{R}_{2})]}{p_{\mathbf{h}}^{3/2}} \right\rangle = \frac{m}{\sqrt{p_{\mathbf{h}}}},$$

we obtain

$$\langle E_{2h} | E_h \rangle = \frac{1}{2N^{1/2}\sqrt{p_h}} (E_h^2 - 1)$$
.

As the variance is equal to unity, by expanding the E_{2h} conditional distribution in Gram-Charlier series, we can write

$$P(E_{2h}|E_h) = \frac{1}{\sqrt{2\pi}} \exp\left[-\frac{1}{2} \left(E_{2h} - \frac{(E_h^2 - 1)}{2N^{1/2}\sqrt{p_h}}\right)^2\right].$$

This equation can be compared with previous results [i.e. Cochran & Woolfson (1955), equation (3.8)].

The probability $P_{+}(E_{2h})$ is finally obtained as

$$P_{+}(E_{2h}) = \frac{1}{2} + \frac{1}{2} \tanh \left[\frac{1}{2N^{1/2}\sqrt{p_{h}}} |E_{2h}| (E_{h}^{2} - 1) \right]. (19)$$

To obtain other \sum_1 formulas, we modify the probability distribution (18) by putting $E_2 = E_h(\mathbf{I} - \mathbf{R}_s)$, where \mathbf{R}_s is a matrix rotation of the space groups. In this case we obtain

$$\begin{split} \lambda_{12} &= \frac{\left\langle \xi^2(\mathbf{h})\xi[\mathbf{h}(\mathbf{I} - \mathbf{R}_s)] \right\rangle}{m^{3/2}p_\mathbf{h}\sqrt{p_\mathbf{h}(\mathbf{I} - \mathbf{R}_s)}} \\ &= \frac{\left\langle \sum_{q}^{m} \xi_q[\mathbf{h}(\mathbf{I} - \mathbf{R}_q)]\xi[\mathbf{h}(\mathbf{I} - \mathbf{R}_s)] \right\rangle}{m^{3/2}p_\mathbf{h}\sqrt{p_\mathbf{h}(\mathbf{I} - \mathbf{R}_s)}} = \frac{\sqrt{p_\mathbf{h}(\mathbf{I} - \mathbf{R}_s)}}{m^{1/2}p_\mathbf{h}} \end{split}$$

and

$$\langle E_{\mathbf{h}}(\mathbf{I} - \mathbf{R}_{s}) | E_{\mathbf{h}} \rangle = \frac{1}{2N^{1/2}} \frac{\sqrt{p_{\mathbf{h}}(\mathbf{I} - \mathbf{R}_{s})}}{p_{\mathbf{h}}} (|E_{\mathbf{h}}|^{2} - 1)$$

$$\times \exp 2\pi i \mathbf{h} T_{s}.$$

Likewise equation (19) is modified to

$$P_{+}[E_{h}(\mathbf{I} - \mathbf{R}_{s})] = \frac{1}{2} + \frac{1}{2} \tanh \frac{W}{2N^{1/2}} |E_{h}(\mathbf{I} - \mathbf{R}_{s})| (|E_{h}|^{2} - 1)$$

$$\times \exp 2\pi i h \mathbf{T}_{s}$$

where W is equal to $\sqrt{p_h(I-R_s)}/p_h$.

Non-centrosymmetric crystal

As is well known, the characteristic function C of the multivariate distribution $P(A_1, A_2, A_3, B_1, B_2, B_3)$ may be expanded in terms of cumulants:

$$C(u_1, u_2, u_3, v_1, v_2, v_3) = \exp \left[t \sum_{r+s+\ldots+w}^{\infty} \frac{\lambda'_{rs...w}}{r!s!\ldots w!} \times \left(\frac{iu_1}{t^{1/2}} \right)^r \left(\frac{iu_2}{t^{1/2}} \right)^s \cdots \left(\frac{iv_3}{t^{1/2}} \right)^w \right]$$

where

$$\lambda'_{rs...w} = \frac{K_{rs...w}}{m^{(r+s+...+w)/2}}.$$

 $K_{rs...w}$ is a cumulant (with indices r, s, ..., w) of the distribution:

$$A_1 = |E_h| \cos \varphi_h,$$

 $A_2 = |E_k| \cos \varphi_k,$
 $A_3 = |E_{h-k}| \cos \varphi_{h-k}, \dots$

By taking the Fourier transform we can derive (retaining terms to order $1/t^{1/2}$) the formula

$$P(A_{1}, A_{2}, A_{3}, B_{1}, B_{2}, B_{3}) = \frac{1}{(2\pi)^{3}} \cdot \frac{1}{\sqrt{\lambda}}$$

$$\times \exp\left\{-\frac{1}{2} \left[\frac{A_{1}^{2}}{\lambda'_{200000}} + \frac{A_{2}^{2}}{\lambda'_{020000}} + \dots + \frac{B_{2}^{2}}{\lambda'_{000020}} + \frac{B_{3}^{2}}{\lambda'_{000002}} \right] \right\} \cdot \left\{1 + \frac{1}{t^{1/2}} \left[\frac{\lambda'_{111000}A_{1}A_{2}A_{3}}{\lambda'_{200000} \cdot \lambda'_{020000} \cdot \lambda'_{002000}} + \frac{\lambda'_{001110}A_{3}B_{1}B_{2}}{\lambda'_{002000} \cdot \lambda'_{000200} \cdot \lambda'_{000020}} + \frac{\lambda'_{101011}A_{2}B_{1}B_{3}}{\lambda'_{200000} \cdot \lambda'_{000020} \cdot \lambda'_{000002}} + \frac{\lambda'_{100011}A_{1}B_{2}B_{3}}{\lambda'_{200000} \cdot \lambda'_{000020} \cdot \lambda'_{000002}} + \dots\right\}, \tag{20}$$

where

$$\lambda = \lambda'_{200000} \cdot \lambda'_{020000} \cdot \cdot \cdot \lambda'_{000002}$$

and

$$\lambda'_{200000} = \frac{K_{200000}}{m} = \frac{\langle \psi^2(\mathbf{h}) \rangle}{m p_{\mathbf{h}}}, \dots$$

It is easily shown that the distribution (20) coincides, in the case of general reflexions, with the known formula (Karle & Hauptman, 1956),

$$P(|E_1|, |E_2|, |E_3|, \varphi_1, \varphi_2, \varphi_3) = \frac{1}{\pi^3} |E_1| |E_2| |E_3|$$

$$\times \exp(-|E_1|^2 - |E_2|^2 - |E_3|^2)$$

$$\times \left\{ 1 + \frac{2}{\sqrt{N}} |E_1| |E_2| |E_3| \cos(\varphi_1 - \varphi_2 - \varphi_3) \right\}.$$

The conditional mean values

$$\langle A_2 A_3 - B_2 B_3 \rangle = \langle |E_{\mathbf{k}} E_{\mathbf{h} - \mathbf{k}}| \cos(\varphi_{\mathbf{k}} + \varphi_{\mathbf{h} - \mathbf{k}}) \rangle,$$

and

$$\langle A_2 B_3 + A_3 B_2 \rangle = \langle |E_{\mathbf{k}} E_{\mathbf{h} - \mathbf{k}}| \sin(\varphi_{\mathbf{k}} + \varphi_{\mathbf{h} - \mathbf{k}}) \rangle,$$

when A_1 and B_1 are fixed and the fact that

$$K_{111000} = m_{111000} = \frac{\langle \psi(\mathbf{h})\psi(\mathbf{k})\psi(\mathbf{h} - \mathbf{k})\rangle}{\sqrt{p_{\mathbf{h}}p_{\mathbf{k}}p_{\mathbf{h} - \mathbf{k}}}}$$
, etc.,

gives the result

$$\langle |E_{\mathbf{k}}E_{\mathbf{h}-\mathbf{k}}| \cos (\varphi_{\mathbf{k}} + \varphi_{\mathbf{h}-\mathbf{k}}) \rangle$$

$$= \frac{1}{t^{1/2}} \left\{ \frac{\lambda'_{111000} - \lambda'_{100011}}{\lambda'_{200000}} A_{1} \right\} = \frac{1}{N^{1/2}} \frac{\sqrt{p_{\mathbf{h}}}}{\langle \psi^{2}(\mathbf{h}) \rangle}$$

$$\times \left\{ \frac{\langle \psi(\mathbf{h}) \left[\psi(\mathbf{k}) \psi(\mathbf{h}-\mathbf{k}) - \eta(\mathbf{k}) \eta(\mathbf{h}-\mathbf{k}) \right] \rangle}{\sqrt{p_{\mathbf{k}} p_{\mathbf{h}-\mathbf{k}}}} \right\}$$

$$\times |E_{\mathbf{h}}| \cos \varphi_{\mathbf{h}}. \tag{21}$$

In the same way we find

$$\langle |E_{\mathbf{k}}E_{\mathbf{h}-\mathbf{k}}| \sin (\varphi_{\mathbf{k}} + \varphi_{\mathbf{h}-\mathbf{k}}) \rangle$$

$$= \frac{1}{t^{1/2}} \left\{ \frac{\lambda'_{001110} + \lambda'_{010101}}{\lambda'_{000200}} B_{1} \right\} = \frac{1}{N^{1/2}} \frac{\sqrt{p_{\mathbf{h}}}}{\langle \eta^{2}(\mathbf{h}) \rangle}$$

$$\times \left\{ \frac{\langle \eta(\mathbf{h}) \left[\eta(\mathbf{k}) \psi(\mathbf{h} - \mathbf{k}) + \psi(\mathbf{k}) \eta(\mathbf{h} - \mathbf{k}) \right] \rangle}{\sqrt{p_{\mathbf{k}} p_{\mathbf{h} - \mathbf{k}}}} \right\}$$

$$\times |E_{\mathbf{h}}| \sin \varphi_{\mathbf{h}}. \tag{22}$$

From the distribution (20) we derive the conditional mean values $\langle A_h \rangle$ and $\langle B_h \rangle$ when A_k , A_{h-k} , B_k , B_{h-k} are fixed. After some calculations

$$\langle |E_{\mathbf{h}}| \cos \varphi_{\mathbf{h}} \rangle = \frac{1}{t^{1/2}} \left\{ \lambda'_{111000} \frac{A_{2}A_{3}}{\lambda'_{020000} \cdot \lambda'_{002000}} + \frac{\lambda'_{100011}}{\lambda'_{000020} \cdot \lambda'_{000002}} - B_{2}B_{3} \right\}$$

$$= \frac{\sqrt{p_{\mathbf{k}}p_{\mathbf{h}-\mathbf{k}}}}{\sqrt{p_{\mathbf{h}}}} \frac{m}{N^{1/2}} |E_{\mathbf{k}}E_{\mathbf{h}-\mathbf{k}}| \left\{ \frac{\langle \psi(\mathbf{h})\psi(\mathbf{k})\psi(\mathbf{h}-\mathbf{k}) \rangle}{\langle \psi^{2}(\mathbf{k}) \rangle \langle \psi^{2}(\mathbf{h}-\mathbf{k}) \rangle} \right.$$

$$\times \cos \varphi_{\mathbf{k}} \cos \varphi_{\mathbf{h}-\mathbf{k}}$$

$$+ \frac{\langle \psi(\mathbf{h})\eta(\mathbf{k})\eta(\mathbf{h}-\mathbf{k}) \rangle}{\langle \eta^{2}(\mathbf{k}) \rangle \langle \eta^{2}(\mathbf{h}-\mathbf{k}) \rangle} \sin \varphi_{\mathbf{k}} \sin \varphi_{\mathbf{h}-\mathbf{k}} \right\}; \qquad (23)$$

$$\langle |E_{\mathbf{h}}| \sin \varphi_{\mathbf{h}} \rangle = \frac{\sqrt{p_{\mathbf{k}}p_{\mathbf{h}-\mathbf{k}}}}{\sqrt{p_{\mathbf{h}}}} \frac{m}{N^{1/2}} |E_{\mathbf{k}}E_{\mathbf{h}-\mathbf{k}}|$$

$$\times \left\{ \frac{\langle \eta(\mathbf{h})\eta(\mathbf{k})\psi(\mathbf{h}-\mathbf{k})\rangle}{\langle \eta^{2}(\mathbf{k})\rangle \langle \psi^{2}(\mathbf{h}-\mathbf{k})\rangle} \sin \varphi_{\mathbf{k}} \cos \varphi_{\mathbf{h}-\mathbf{k}} + \frac{\langle \eta(\mathbf{h})\psi(\mathbf{k})\eta(\mathbf{h}-\mathbf{k})\rangle}{\langle \psi^{2}(\mathbf{k})\rangle \langle \eta^{2}(\mathbf{h}-\mathbf{k})\rangle} \cos \varphi_{\mathbf{k}} \sin \varphi_{\mathbf{h}-\mathbf{k}} \right\}.$$
(24)

If E_h , E_k , E_{h-k} are general reflexions we obtain

$$\langle |E_{\mathbf{h}}| \cos \varphi_{\mathbf{h}} \rangle = \frac{1}{VN} |E_{\mathbf{k}} E_{\mathbf{h} - \mathbf{k}}| \cos (\varphi_{\mathbf{k}} + \varphi_{\mathbf{h} - \mathbf{k}}),$$

$$\langle |E_{\mathbf{h}}| \sin \varphi_{\mathbf{h}} \rangle = \frac{1}{\sqrt{N}} |E_{\mathbf{k}} E_{\mathbf{h} - \mathbf{k}}| \sin (\varphi_{\mathbf{k}} + \varphi_{\mathbf{h} - \mathbf{k}});$$

so that in all space groups the relation (8) is justified. If $E_{\mathbf{k}}$ is a centrosymmetric reflexion $[\eta(\mathbf{k})=0]$, we find

$$\langle |E_{\mathbf{h}}| \cos \varphi_{\mathbf{h}} \rangle = \frac{\sqrt{p_{\mathbf{k}} p_{\mathbf{h} - \mathbf{k}}}}{\sqrt{p_{\mathbf{h}}}} \frac{m}{N^{1/2}} |E_{\mathbf{k}} E_{\mathbf{h} - \mathbf{k}}|$$

$$\times \left\{ \frac{\langle \psi(\mathbf{h}) \psi(\mathbf{k}) \psi(\mathbf{h} - \mathbf{k}) \rangle}{\langle \psi^{2}(\mathbf{k}) \rangle \langle \psi^{2}(\mathbf{h} - \mathbf{k}) \rangle} \cos (\varphi_{\mathbf{k}} + \varphi_{\mathbf{h} - \mathbf{k}}) \right\}, \quad (25)$$

$$\langle |E_{\mathbf{h}}| \sin \varphi_{\mathbf{h}} \rangle = \frac{\sqrt{p_{\mathbf{k}} p_{\mathbf{h} - \mathbf{k}}}}{\sqrt{p_{\mathbf{h}}}} \frac{m}{N^{1/2}} |E_{\mathbf{k}} E_{\mathbf{h} - \mathbf{k}}|$$

$$\times \left\{ \frac{\langle \eta(\mathbf{h}) \psi(\mathbf{k}) \eta(\mathbf{h} - \mathbf{k}) \rangle}{\langle \psi^{2}(\mathbf{k}) \rangle \langle \psi^{2}(\mathbf{h} - \mathbf{k}) \rangle} \sin (\varphi_{\mathbf{k}} + \varphi_{\mathbf{h} - \mathbf{k}}) \right\}. \tag{26}$$

As in this case

$$\frac{\langle \psi(\mathbf{h})\psi(\mathbf{k})\psi(\mathbf{h}-\mathbf{k})\rangle}{\langle \psi^2(\mathbf{k})\rangle \langle \psi^2(\mathbf{h}-\mathbf{k})\rangle} = \frac{\langle \eta(\mathbf{h})\psi(\mathbf{k})\eta(\mathbf{h}-\mathbf{k})\rangle}{\langle \psi^2(\mathbf{k})\rangle \langle \psi^2(\mathbf{h}-\mathbf{k})\rangle}$$
(27)

the relation (8) is still valid.

Analogously, if one E_{h-k} reflexion is centrosymmetrical, equation (25) still holds, and relations similar to (26) and (27) can be worked out. Following Cochran (1955), one can easily deduce that in the distribution (9) a suitable weight must be applied: in the example of Table 1,

$$G_{\mathbf{h}, \mathbf{k}} = m \frac{\sqrt{p_{\mathbf{k}} p_{\mathbf{h} - \mathbf{k}}}}{\sqrt{p_{\mathbf{h}}}} \frac{\langle \psi(\mathbf{h}) \psi(\mathbf{k}) \psi(\mathbf{h} - \mathbf{k}) \rangle}{\langle \psi^{2}(\mathbf{k}) \rangle \langle \psi^{2}(\mathbf{h} - \mathbf{k}) \rangle} \times 2 \frac{|E_{\mathbf{h}} E_{\mathbf{k}} E_{\mathbf{h} - \mathbf{k}}|}{\sqrt{N}} = W_{\mathbf{h}, \mathbf{k}} 2 \frac{|E_{\mathbf{h}} E_{\mathbf{k}} E_{\mathbf{h} - \mathbf{k}}|}{\sqrt{N}}. \quad (28)$$

A more general expression for these weights, valid in all space groups will be identified in the following paper (Giacovazzo, 1974).

I wish to thank Dr J. Karle for critical reading of the manuscript.

APPENDIX

From the theory of linearization (Bertaut, 1959a,b) we obtain for a general space group of order m,

Table 1.
$$-\mathbf{h}_i + \mathbf{k}_i + \mathbf{h}_k = 0$$

	$h_1k_1l_1 \\ h_2k_2l_2 \\ h_3k_3l_3$	$h_1k_1l_1 \\ h_2k_20 \\ h_3k_3l_3$	$h_1k_1l_1 h_200 h_3k_3l_3$	$h_1k_1l_1 h_2k_20 h_30l_3$	$h_1k_1l_1 \\ h_200 \\ 0k_3l_3$	$h_1k_10 h_2k_20 h_3k_30$	$h_1k_10 \\ h_20l_2 \\ 0k_3l_3$	$h_1k_10 h_2k_20 h_300$	$h_1k_10 \\ h_200 \\ 0k_10$	$h_100 \\ h_200 \\ h_300$	$h_100 \\ h_2k_2l_2 \\ h_2l_2 $
$\langle \psi(\mathbf{h})\psi(\mathbf{k})\psi(\mathbf{h}-\mathbf{k})\rangle$	1131×313	713133	4 -		0 6 3 1 3	$n_3\kappa_30$	OK 313	<i>n</i> ₃ 00	$0k_{3}0$	h_300	$h_3k_3l_3$
$\langle \psi(\mathbf{n})\psi(\mathbf{k})\psi(\mathbf{n}-\mathbf{k})\rangle$	1	4	4	4	0	4	ŏ	ð	16	16	4
$\langle \eta(\mathbf{h})\eta(\mathbf{k})\psi(\mathbf{h}-\mathbf{k})\rangle$	1	0	0	0	0	0	0	0	0	0	0
$\langle \eta(\mathbf{h})\psi(\mathbf{k})\eta(\mathbf{h}-\mathbf{k})\rangle$	1	2	4	0	0	0	0	0	0	Ō	0
$\langle \psi(\mathbf{h})\eta(\mathbf{k})\eta(\mathbf{h}-\mathbf{k})\rangle$	-1	0	0	0	0	0	0	0	0	0	-4
$W_{\mathbf{h},\mathbf{k}}$	1	1	//2	1	//2	1	2	//2	2	1/2	21/2

Table 2. $\mathbf{h}_i + \mathbf{h}_i + \mathbf{h}_k = 0$

Parity classes	$h_1k_1l_1 \\ h_2k_2l_2 \\ h_3k_3l_3$	$h_1k_1l_1 \\ h_2k_20 \\ h_3k_3l_3$	$h_1 k_1 l_1 h_2 00 h_3 k_3 l_3$	$h_1k_1l_1 h_2k_20 h_30l_3$		$h_1k_10 h_2k_20 h_3k_30$	$h_1k_10 \\ h_20l_2 \\ 0k_3l_3$	$h_1k_10 \\ h_2k_20 \\ h_300$	$h_1k_10 \\ h_200 \\ 0k_30$	$h_100 \\ h_200 \\ h_300$
$\langle \xi(\mathbf{h})\xi(\mathbf{k})\xi(\mathbf{h}+\mathbf{k}) \rangle$	8	16	32	32	64	32	64	64	128	128
$\frac{\langle \xi(\mathbf{h})\xi(\mathbf{k})\xi(\mathbf{h}+\mathbf{k})\rangle}{\sqrt{p_{\mathbf{h}}}\sqrt{p_{\mathbf{k}}}\sqrt{p_{\mathbf{h}+\mathbf{k}}}}$	8	8/2	16	16	161/2	81/2	161/2	16	16/2	16
$W_{\mathbf{h},\mathbf{k}}$	1	//2	2	2	21/2	1/2	2/2	2	21/2	2

$$\xi(\mathbf{H}_{3})\xi(\mathbf{H}_{1}) = \sum_{1}^{m} \xi(\mathbf{H}_{3} + \mathbf{H}_{1}\mathbf{C}_{s})$$

$$= \sum_{1}^{m} a_{s}(\mathbf{H}_{1})\xi(\mathbf{H}_{3} + \mathbf{H}_{1}\mathbf{R}_{s}), \quad (A1)$$

where $a_s(\mathbf{H}) = \exp 2\pi i \mathbf{H} \mathbf{T}_s$.

If we multiply equation (A1) for $\xi(\mathbf{H}_2)$, by setting $\mathbf{H}_3 = \mathbf{\bar{H}}_1 + \mathbf{\bar{H}}_2$, we find

$$\xi(\mathbf{H}_{1})\xi(\mathbf{H}_{2})\xi(\mathbf{H}_{3}) = \sum_{1}^{m} \sum_{1}^{m} \xi[\mathbf{H}_{1}(\mathbf{C}_{s} - \mathbf{I}) + \mathbf{H}_{2}(\mathbf{C}_{r} - \mathbf{I})]$$

$$= \sum_{1}^{m} a_{s}(\mathbf{H}_{1})a_{r}(\mathbf{H}_{2})$$

$$\times \xi[\mathbf{H}_{1}(\mathbf{R}_{s} - \mathbf{I}) + \mathbf{H}_{2}(\mathbf{R}_{r} - \mathbf{I})]. \quad (A2)$$

The mean value $\langle \xi(\mathbf{H}_1)\xi(\mathbf{H}_2)\xi(\mathbf{H}_3) \rangle$ is different from the zero for all \mathbf{C}_r , \mathbf{C}_s operations for which

$$H_1(R_s-I)+H_2(R_r-I)=0.$$
 (A3)

For example, if C_s is a operation for which $H_1(R_s-I)=0$, the condition (A3) is verified for all r operations C_r such that

$$H_2(\mathbf{R}_r - \mathbf{I}) = 0.$$

Therefore, if $E_{\mathbf{H_3}}$ is non-special reflexion, we obtain $\langle \xi(\mathbf{H_1})\xi(\mathbf{H_2})\xi(\mathbf{H_3})\rangle = p_{\mathbf{H_1}}p_{\mathbf{H_2}}\xi(0) = p_{\mathbf{H_1}}p_{\mathbf{H_2}}m$.

Numerical values for different parity classes are shown in Table 2 for the space group *Pmmm*.

In a similar way it results

$$\xi^{2}(\mathbf{h})\xi(2\mathbf{h}) = \sum_{s,r}^{m} \xi[\mathbf{h}(\mathbf{I} - \mathbf{C}_{s} + 2\mathbf{C}_{r})].$$

If the **h** reflexion is general, $\langle \xi^2(\mathbf{h})\xi(2\mathbf{h})\rangle$ is different from zero for $\mathbf{C}_s = -\mathbf{I}$ and $\mathbf{C}_r = \mathbf{I}$: then

$$\langle \xi^2(\mathbf{h})\xi(2\mathbf{h})\rangle = m$$
.

If E_h has statistical weight p_h ,

$$\langle \xi^2(\mathbf{h})\xi(2\mathbf{h})\rangle = p_{\mathbf{h}} \sum_{1,r}^{m/p_{\mathbf{h}}} \xi[\mathbf{h}(\mathbf{I} - \mathbf{C}_s + 2\mathbf{C}_r)] = mp_{\mathbf{h}}.$$

References

BERTAUT, E. F. (1959a). Acta Cryst. 12, 541-549.

BERTAUT, E. F. (1959b). Acta Cryst. 12, 570-574.

BERTAUT, E. F. & WASER, J. (1957). Acta Cryst. 10, 606-607.

COCHRAN, W. (1955). Acta Cryst. 8, 473-478.

Cochran, W. & Woolfson, M. M. (1955). *Acta Cryst.* 8, 1–12.

CRAMÉR, H. (1951). Mathematical Methods of Statistics. Princeton Univ. Press.

GERMAIN, G., MAIN, P. & WOOLFSON, M. M. (1971). Acta Cryst. A27, 368-376.

GIACOVAZZO, C. (1974). Acta Cryst. A 30, 631-634.

HAUPTMAN, H. & KARLE, J. (1953). Solution of the Phase Problem. I. The Centrosymmetric Crystal. A.C.A. Monograph No. 3. Pittsburgh: Polycrystal Book Service.

KARLE, J. & HAUPTMAN, H. (1956). Acta Cryst. 9, 635-651.

KARLE, J. & KARLE, I. (1966). Acta Cryst. 21, 849–859.

KLUG, A. (1958). Acta Cryst. 11, 515-543.

NAYA, S., NITTA, I. & ODA, T. (1964). Acta Cryst. 17, 421–433.

Watson, G. N. (1922). A Treatise on the Theory of Bessel Functions. Cambridge Univ. Press.

Woolfson, M. M. (1954). Acta Cryst. 7, 61-64.